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Abstract

A recent experimental study has demonstrated the attainability of intersonic shear crack growth
along weak planes in otherwise homogeneous, isotropic, linear elastic solids subjected to remote
loading conditions (Rosakis et al., Science 284 (5418) (1999) 1337). The relevant experimen-
tal observations are summarized brie8y here and the conditions governing the attainment of
intersonic crack speeds are examined. Motivated by experimental observations, subsonic and
intersonic mode II crack propagation with a rate-dependent cohesive zone is subsequently ana-
lyzed. A cohesive law is assumed, wherein the cohesive shear traction is either a constant or
varies linearly with the local sliding rate. Complete decohesion is assumed to occur when the
crack tip sliding displacement reaches a material-speci;c critical value. Closed form expressions
are obtained for the near-tip ;elds. With a cohesive zone of ;nite size, it is found that the dy-
namic energy release rate is ;nite through out the intersonic regime. Crack tip stability issues are
addressed and favorable speed regimes are identi;ed. The in8uence of shear strength of the crack
plane and of a rate parameter on crack propagation behavior is also investigated. The isochro-
matic fringe patterns predicted by the analytical solution are compared with the experimental
observations of Rosakis et al. (1999) and comments are made on the validity of the proposed
model. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

For remotely loaded mode I cracks in homogeneous, isotropic, linear elastic solids,
the theoretical upper limit on the propagation speed v is the Rayleigh wave speed (cR)
of the material (Freund, 1990; Broberg, 1999a). The energy 8ux into the crack tip
region vanishes at cR and at higher speeds no analytical solution can be found with
positive energy 8ux into the tip (Broberg, 1989). Indeed, positive energy 8ux is required
because crack growth involves material separation, which is an energy-consuming pro-
cess, and hence a necessary condition for propagation of a crack is that energy be
supplied from the outer stress ;eld to the crack tip region.
However, experimental observations in the laboratory typically show mode I crack

speeds that are less than 60% of cR (Fineberg and Marder, 1999). At about 30–40%
of cR, the micro-branching instability sets in, whereby the crack follows a wavy
path producing increasingly rough fracture surfaces and repeatedly attempts to branch
(Ramulu and Kobayashi, 1985; Ravichandar and Knauss, 1984a; Gao, 1993). Eventu-
ally, successful branching into multiple cracks occurs at speeds much below cR, thus
making the theoretical limit inaccessible. Also the height of the process region (for
e.g., zone of micro-cracking) increases substantially at high fracture speeds, indicat-
ing a strong increase in the fracture energy required to sustain propagation at these
speeds (Ravichandar and Knauss, 1984b; Johnson, 1992). Knauss and his coworkers
have shown that if the height of the process region can be restrained to a thin layer
along the crack path, thus suppressing branching, then crack speeds can approach the
theoretical limiting speed, cR (Lee and Knauss, 1989; Washabaugh and Knauss, 1994).
They observed mode I cracks along a weak plane between two identical brittle solids,
asymptotically approaching the theoretical limit cR, as the cohesive strength of the
plane was reduced. The only scenario in which a mode I crack can attain intersonic or
supersonic speeds is when loading is applied directly at the crack tip. Winkler et al.
(1970), Curran et al. (1970) reported supersonic crack growth along weak crystallo-
graphic planes of potassium chloride, where the crack tip was loaded by laser-induced
expanding plasma. The crack speeds observed coincided with the measured plasma
expansion speeds, implying that the situation was similar to a crack being driven by a
supersonic wedge.
For remotely loaded mode II cracks (prescribed to propagate in their own plane),

crack speeds below cR (subRayleigh) as well as those in the intersonic regime (speeds
between the shear wave speed, cs and the longitudinal wave speed, cl) are permissi-
ble from energetic considerations similar to the mode I case. The crack speed regime
between cR and cs is forbidden. As a result, such cracks may either be purely sub-
Rayleigh or purely intersonic, but may not transition between the two regimes with a
continuous variation of crack speed. Hence the upper limit on the propagation speed
(according to the classical interpretation based on a linear elastic constitutive descrip-
tion) for a remotely loaded mode II crack is cl (Broberg, 1996).

Propagating mode II cracks are usually not observed (experimentally) in homoge-
neous isotropic solids. A crack subjected to mode II or mixed mode loading, curves
or kinks and propagates in a direction that maintains locally pure mode I conditions
at the tip (Cotterell and Rice, 1980; Nematnasser and Horii, 1982; Hutchinson and
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Suo, 1992). Mode II crack growth in homogeneous isotropic solids can occur, if high
compressive ambient stresses are acting on the body, preventing crack opening (Melin,
1986; Broberg, 1987). Directional stability of mode II cracks may also be sustained,
if they propagate along a weak layer. A prime example of dynamically growing mode
II cracks are earthquake fault ruptures which occur in the presence of high ambient
compressive and shear pre-stresses and most often also propagate along pre-existing
weak fault planes in the earth’s crust. Ruptures on shallow crustal faults are estimated
to run at average speeds close to cs of crustal rocks, although evidence has accumu-
lated over the years, of intersonic rupture speeds at least over a portion of the faulting
(Archuleta, 1984; Spudich and Cranswick, 1984; Olsen et al., 1997; Hernandez et al.,
1999; Ellsworth and Celebi, 1999; Bouchon et al., 2000, 2001). Rosakis et al. (1999,
2000), provided the ;rst unambiguous evidence of intersonic mode II cracks in the lab-
oratory. A single edge-notch oriented along a weak joint between two identical plates
of Homalite-100, a brittle polyester resin, was subjected to dynamic shear loading by
a projectile ;red from a gas gun. A shear crack initiating from the notch was observed
to propagate at intersonic speeds and radiate shear Mach waves.
Most of the early analytical and numerical work on dynamic shear crack prop-

agation has appeared in the seismological literature. In probably the ;rst study on
intersonic shear cracks, Burridge (1973) analyzed the problem of a mode II crack
growing self-similarly from zero initial length along an interface between two identical
half-spaces held together by Coulomb frictional contact and subjected to pre-imposed
uniform normal and shear stresses. The crack front was de;ned to be the loci of points
where the shear stress drops abruptly from the limiting static friction value to the
dynamic friction value. He found that for subsonic crack speeds, a positive peak in
shear stress propagating along with the shear wave front, appears ahead of the crack
tip. This peak in shear stress is observed to increase in magnitude as the crack speed
increases and he postulated that it might lead to a secondary slip zone in front of the
main crack tip provided the limiting static friction is small. He argued that a shear
crack on such an interface will propagate at cR and if the limiting static friction is
small, it would propagate at cl. He also noted that the crack tip stress singularity
for intersonic mode II cracks is less than 1

2 and that it is a function of crack speed.
Andrews (1976) analyzed numerically, the problem of transient symmetric expansion
of a mode II crack propagating along a prescribed path with a slip weakening cohesive
zone (Ida, 1972; Palmer and Rice, 1973), under the action of a uniform remote shear
stress. Corroborating Burridge’s prediction, he found that the expanding shear crack
rapidly accelerates to speeds close to cR, and if the limiting static friction is not high
enough, it initiates a secondary slip zone in front of it, which coalesces with the main
crack and the combination was found to propagate at speeds around 1:5cs. His observa-
tion describes one possible mechanism for a subsonic shear crack to cross the forbidden
speed regime between cR and cs. He pointed out that for intersonic cracks, where the
crack tip stress singularity is less than 1

2 , a non-zero fracture energy is supported only
for the case where the stress drop is not abrupt, i.e., the crack tip region must have
a ;nite extent. Das and Aki (1977) analyzed transient mode II crack expansion in an
in;nite, isotropic, homogeneous, elastic solid under uniform remote shear stress using
a boundary integral method. The crack tip was modeled as a structureless point and
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dynamic friction was assumed to act on the crack faces. Using a critical stress criterion,
they con;rmed the numerical results of Andrews (1976).
Freund (1979) obtained the asymptotic stress and particle velocity ;elds around a

steady state, intersonic mode II crack, constrained to propagate along a straight line
path. Since mode II cracks usually do not propagate along straight line paths, this
restriction models the existence of a line of lower toughness in an otherwise homo-
geneous solid, a situation that may make mode II crack growth physically possible.
He showed that the stress ;eld predicts two Mach waves radiating from the crack tip.
Stresses are singular not only at the crack tip, but all along the Mach fronts, with
the same order of singularity as that at the tip. In addition, across the Mach front,
the normal stress perpendicular to the front is continuous, where as the shear stress
suKers an in;nite jump. Hence these fronts are shear Mach waves. He also commented
upon the curious speed of

√
2cs, at which an intersonic crack behaves “subsonic-like”

and the two trailing Mach waves disappear. He investigated the problem of transient
symmetric expansion of a mode II crack under remote shear stress which was studied
numerically by Andrews (1976) and Das and Aki (1977). Using a critical stress crite-
rion, he concluded that the terminal speed for a subRayleigh mode II crack is cR, and
that an intersonic mode II crack would begin to grow at a speed greater than

√
2cs

and would quickly accelerate to cl. Burridge et al. (1979) investigated the stability of
a steady-state mode II semi-in;nite crack with a slip-weakening cohesive zone driven
by a point load acting on the crack faces a ;nite distance from the tip. They solved
the governing integral equation numerically and concluded that, for a dynamic mode
II crack, the crack speed regimes v¡cR and cs ¡v¡

√
2cs are inherently unstable,

the speed regime
√
2cs ¡v¡cl is stable and that the speed regime cR ¡v¡cs is

forbidden.
Rice (1980), Das (1985) and Dmowska and Rice (1986) summarized the literature

on dynamic shear crack propagation and its application to modeling the earthquake
source process. Georgiadis (1986) investigated the nature of stress singularity for a
steady-state mode II intersonic crack and con;rmed Freund’s result. Broberg (1989)
gave an elegant summary of the admissible crack speed regimes for mode I, mode II
and mode III cracks (all propagating along a pre-determined straight line path), based
on the requirement of a positive energy 8ux to the crack tip region. Broberg (1994,
1995) also solved analytically the problem of a self-similar intersonic mode II crack
expanding symmetrically from zero initial length under the action of a remote uniform
shear stress. He showed that the dynamic energy release rate depends on the extent
of the process region as (d=a)(1−2q), where d is the extent of the process region, a is
the crack length and q is the speed-dependent crack tip stress singularity. Except for
v=

√
2cs, where q= 1

2 , a vanishing process region predicts a vanishing energy 8ux into
the tip. He assumed a Barenblatt-type process region near the crack tip and computed
the energy 8ux into the intersonic crack tip region. For the chosen process region type,
he showed that the requirement of constant fracture energy (critical dynamic energy
release rate), independent of crack speed, would accelerate an intersonic crack all the
way up to cl. He also solved the problem of an accelerating semi-in;nite intersonic
mode II crack (Broberg, 1999b). Johnson (1990) showed that steady-state unidirectional
mode II crack growth is possible in earthquake events, provided, one of the leading
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edges associated with an initially extending rupture front, encounters a barrier (region
of high shear strength). In his ;nite element simulations, he observed terminal speeds
close to cl.

Some of the recent analytical and numerical work on dynamic shear cracks was moti-
vated by the experiments of Rosakis and his coworkers on intersonic crack propagation
in homogeneous, isotropic solids (Rosakis et al., 1999, 2000), in bimaterials (Lam-
bros and Rosakis, 1995; Singh et al., 1997; Rosakis et al., 1998) and in transversely
isotropic solids (Coker and Rosakis, 2001) all of which feature special directions of
inhomogeneity in fracture toughness (i.e., planes of reduced fracture toughness). Gao
et al. (1999) made an interesting comparison of intersonic cracks with intersonic glide
edge dislocations and developed a uni;ed treatment for investigating the existence
of radiation-free intersonic speeds for either system. Huang et al. (1999) derived the
asymptotic ;elds around an intersonically propagating mode II crack in a transversely
isotropic material. They showed that a radiation-free intersonic speed exists for a mode
II crack in a transversely isotropic solid, similar to

√
2cs for the homogeneous case,

where the crack tip dynamic energy release rate is ;nite. Yu and Suo (2000) devel-
oped a uni;ed method based on analytic function theory to obtain the near-tip ;elds
for a quasi-static=subsonic=intersonic crack in a homogeneous solid or along a bima-
terial interface with the constituents being either isotropic or anisotropic. They used a
Dugdale-type cohesive zone model and identi;ed those crack speed regimes that result
in negative cohesive zone length to be forbidden.
Needleman (1999) performed a ;nite element simulation of the intersonic shear crack

experiments of Rosakis et al. (1999) using a cohesive surface constitutive relation for
the weak crack path. He found that a shear crack initiating from a pre-crack along the
weak path either propagates at cR or accelerates to a near constant intersonic speed
above

√
2cs. He examined the eKect of shear strength of the interface, the fracture

energy and the duration of the loading pulse on the transition from a subRayleigh
to an intersonic speed, as well as on the terminal speed achieved. Abraham and Gao
(2000) performed an atomistic simulation of shear crack propagation along a weak
interface characterized by a Lennard–Jones potential, joining two harmonic crystals.
Their simulations showed that a shear dominated crack, soon after initiation accelerates
to cR and then nucleates an intersonic daughter crack that travels at cl, in accordance
with the predictions of Burridge (1973) and Andrews (1976). When the applied strain
was completely relaxed after the initiation of the daughter crack, they found shear crack
propagation at

√
2cs, similar to the behavior observed in the experiments of Rosakis et

al. (1999). Geubelle and Kubair (2001) studied numerically, using a spectral boundary
element scheme, the problem of transient initiation and propagation of a mixed mode
in-plane crack in its own plane under the action of remote uniform mixed mode loading.
Using a quasi-linear cohesive failure model, they observed that a shear dominated crack
can attain intersonic speeds either by initiation of a secondary slip zone in front of the
tip (the Burridge–Andrews mechanism) or simply by a rapid, but smooth acceleration
through the forbidden regime. The latter case, which was also observed by Johnson
(1990) is in contradiction with the theoretical prediction that an in-plane crack with a
continuously varying speed cannot accelerate through cR. During steady-state intersonic
crack growth, it was found that the cohesive failure was entirely by shear even under
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far-;eld mixed mode loading, consistent with analytical predictions. Gao et al. (2001)
studied the transition of a subsonic mode II crack to intersonic speeds using a cohesive
fracture criterion and showed that the predictions of continuum elasticity theories are
captured very well by atomistic simulations. More recently Huang and Gao (2001)
obtained the fundamental solution for the intersonic shear crack problem, which may
be used for obtaining the general solutions for intersonic mode II cracks under arbitrary
initial equilibrium ;elds.
Our current work aims at adding to the substantial body of knowledge on dy-

namic mode II crack growth. In particular, the work is motivated by the experimental
observations of intersonic shear cracks in our laboratory. In the next section, a brief de-
scription is provided of the specimen con;guration, experimental setup, the conditions
for attaining straight-ahead intersonic crack growth, observed crack speed histories and
the recorded isochromatic fringe patterns around an intersonically propagating mode
II crack. Also the singular solution of Freund (1979) for intersonic mode II cracks
is revisited and its predictions are examined in light of the experimental observations,
motivating the necessity of a cohesive zone model. In Sections 3–5, a rate-dependent
cohesive zone model for steady-state dynamic mode II crack propagation is proposed
and analyzed, wherein the cohesive shear traction varies linearly with the local sliding
rate. The governing equations are solved using a standard technique in analytic func-
tion theory and the nature of the predicted near-tip ;elds is examined. In Section 6, a
propagation criterion is imposed, which requires a constant crack tip sliding displace-
ment, and its predictions on the fracture energy, cohesive zone length, crack stability
and isochromatic fringe patterns are discussed and compared with the experimental
observations as well as with known analytical and numerical results from the litera-
ture. Finally comments are made on the validity of the proposed model.

2. Experimental observations of intersonic mode II crack growth

Experiments were performed in the laboratory to verify the possibility of intersonic
mode II crack growth in a constitutively homogeneous, isotropic, linear elastic solid.
To ensure the directional stability of a propagating mode II crack, a thin layer of lower
fracture toughness, compared to that of the monolithic material, was introduced along
the prospective crack path. The specimens were made by bonding two identical plates
(6′′×5′′) of Homalite-100, a brittle polyester resin, as shown in the inset of Fig. 1. The
thickness of the plates was either 3=16′′ or 1=4′′ or 3=8′′. Homalite-100 exhibits the
property of stress-induced birefringence, enabling the use of dynamic photoelasticity for
visualizing the stress state in the specimen. The bonding process was chosen carefully
so that the constitutive properties of the bond are close to those of the bulk material. A
polyester resin solution (99.5% by wt) was used for bonding, with methyl ethyl ketone
peroxide as hardener (0.4%) and cobalt octate (0.1%) as catalyst. The bond was cured
for 48 h at room temperature. The thickness of the bond was approximately 20–30 �m.
A notch, 25 mm long and 2 mm wide was machined on the upper half of the specimen
along the bond line (see Fig. 1). The relevant material properties of Homalite at strain
rates of the order 103 s−1 are : shear modulus, 
=1:9 GPa, Poisson’s ratio, �=0:34; cR
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Fig. 1. Dynamic photoelasticity setup showing a Homalite=Homalite specimen placed inside a circular
polariscope and being subjected to impact shear loading by a projectile ;red from a high-speed gas gun.
The resulting isochromatic fringe patterns are recorded by high-speed photography. The specimen geometry
is shown in the inset.

(plane stress) =1155 m=s; cs = 1255 m=s and cl (plane stress) = 2187 m=s. The tensile
strength of bulk Homalite is about 35 MPa and the shear strength of the bond �0, as
measured using a conventional Iosipescu shear test ;xture is around 12–16 MPa.
The experimental setup used to investigate dynamic crack growth under impact shear

loading is shown in Fig. 1. Dynamic photoelasticity was chosen for capturing the stress
;eld near the propagating crack tip because of its ability to visualize shear Mach waves,
anticipated by the intersonic crack solutions. The specimen was subjected to asymmet-
ric impact loading with a cylindrical projectile ;red from a high-speed gas gun. The
projectile was 3′′ long, 2′′ in diameter and was made of hardened steel. Compressed
air at 12–80 psi was used as the driving medium, which resulted in projectile velocities
ranging from 8 to 40 m=s. A steel buKer was bonded to the speciment at the impact site
to prevent shattering and to induce a planar loading wave front. The compressive longi-
tudinal wave loads the notch, initially, in a predominantly shear mode (Lee and Freund,
1990). A notch was preferred to be the crack initiation site instead of a pre-crack, so
that the transmission of stress waves into the top half is prevented, thus ensuring that
the notch tip is loaded under predominantly mode II conditions. The dynamic stress
;eld produced by the impact loading was recorded using photoelasticity in conjunction
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Fig. 2. Single edge notch=crack along a weak plane in Homalite under impact shear loading: (a) Impact
speed=11 m=s. A crack initiating from the notch kinks at 39

◦
to the weak plane. (b) Impact speed=20 m=s.

The pre-crack kinks at 70
◦
to the weak plane. In addition a second crack is also seen propagating along the

weak plane.

with high-speed photography. Photoelasticity is a common optical technique used in
solid mechanics applications which provides real-time full ;eld information about the
stress state and the reader is referred to Dally and Riley (1991) for further details. The
isochromatic fringe pattern was recorded by a rotating mirror-type high-speed camera
capable of recording 80 frames at framing rates up to 2 million frames per second.
Fig. 2 shows the eKect of projectile impact speed on crack initiation from the tip of

the notch=pre-crack in the specimen. Fig. 2(a) shows the isochromatic fringe pattern
around the notch at 109:9 �s (measured from time of impact), for a projectile impact
speed of 11 m=s. Around 50 �s after impact, a kinked crack was observed to initiate
from the notch, inclined at an angle of 39◦ to the weak plane ahead. If we assume, that
the kink angle observed follows the criterion of maximal energy dissipation (Hutchinson
and Suo, 1992), it can be deduced that the mode mixity  =tan−1(KII=KI) at initiation
is ≈ 24◦. Hence, at initiation, the magnitude of the mode I stress intensity factor, KI

was almost 2.25 times that of the mode II stress intensity factor, KII. The opening
dominated nature of the notch-tip ;elds can also be readily expected from the time
taken for crack initiation after impact. Crack initiation occurs around 50 �s, by which
time unloading waves due to the ;nite width of the loading pulse (≈ 28 �s), re8ections
from the far end (with respect to the notch tip) of the buKer plate and also from the
free surface to the left on the top half of the specimen, have arrived and impinged on
the notch eventually changing its mode mixity to a predominantly opening mode. The
kinked crack propagates with mode I symmetry at its tip, as seen from the symmetry of
the two lobes oriented at 90◦ to the crack plane. The average speed of the kinked crack
was ≈ 0:26cs. Fig. 2(b) shows the isochromatic fringe pattern around the pre-crack in
a specimen subjected to projectile impact at 20 m=s. A kinked crack is observed to
initiate from the loaded pre-crack at an angle of 70◦ to the crack plane. Again using
the criterion of maximal energy dissipation, one can see that at initiation, mode mixity
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 ≈ 72◦. Hence, at initiation, magnitude of KII was almost 3.1 times that of KI.
Apart from the kinked crack, another crack can also be observed to propagate straight
ahead, along the weak plane (see Fig. 2(b)). The crack along the weak plane is likely
to be shear dominated, since it initiated from a shear dominated pre-crack, though the
isochromatic fringe pattern is complicated by the presence of the kinked crack. Also the
shear crack along the weak plane propagates at a substantially higher speed compared
to the kinked crack. Schardin (1959) also reported a similar phenomenon, where a crack
along a pre-existing scratch on a glass plate travels at a higher speed as compared to
a crack in solid glass. This suggests that a higher impact speed resulting in initiation
under predominantly shearing mode might result in a fast shear crack propagating
ahead along the weak plane. Also, if the fracture energy of the weak plane is low
compared to the monolithic material then the kinked crack might be eliminated. The
substantial increase in the number of fringes observed is a re8ection of the fact that
the impact speed was higher and also due to the fact that the specimen thickness in the
higher impact case was 3=8′′, where as the specimen thickness in the lower impact case
was 1=4′′. Once a straight-ahead shear crack is initiated, and its directional stability is
maintained, it is possible for it to achieve intersonic speeds as shown in Fig. 3.
Fig. 3(a) shows a selected isochromatic fringe pattern around a propagating mode

II crack along the weak plane. At initiation, the notch is subjected to a mixed mode
loading with a negative KI and a negative KII (Lee and Freund, 1990; Mason et al.,
1992). After initiation, however, the nature of the crack tip deformation must be pure
mode II. To sustain the expected negative KI at the propagating sharp crack tip, the
crack faces must come closer from their initial con;guration. A negative KI is possible
at the tip of a notch, where the notch faces are separated by a ;nite notch width,
however for a sharp crack, the crack faces are already in contact (but traction free) in
their rest con;guration. Hence, a sharp crack tip cannot sustain a negative KI, and pure
mode II conditions must prevail at the tip, albeit with negative normal tractions acting
on the crack faces (which annul the negative KI required at the tip due to the mixity of
far-;eld loading). The ;eld of view shown in Fig. 3(a) has a diameter of 50 mm and
is centered on the weak plane, 38:2 mm ahead of the notch tip. Impact speed of the
projectile was 20:8 m=s. The time after impact as well as the crack tip speed is shown
in the ;gure. The crack speed is in the intersonic range. We can clearly distinguish
two lines radiating from the crack tip, across which the fringe pattern changes abruptly
(lines of stress ;eld discontinuity). These two lines correspond to the two traveling
shear Mach waves, which limit the spread of shear waves emanating from the crack tip
as it propagates along the interface at intersonic speeds. The angle � the Mach waves
make with the crack faces is related to the crack speed through

�= sin−1(cs=v): (1)

Our experimental observations on intersonic mode II crack growth have been reported
in greater detail in Rosakis et al. (1999, 2000).
Fig. 3(b) shows the variation of crack speed as the shear crack propagates along

the weak plane. Crack length includes length of the initial notch which was about
1′′. Data is shown for two similar experiments, varying in the position of the ;eld of
view. Experiment 9 corresponds to a projectile impact speed of 26:8 m=s and the ;eld
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Fig. 3. (a) Isochromatic fringe pattern around a propagating intersonic crack along a weak plane in Homalite.
(b) Evolution of crack speed as the crack propagates along the weak plane. Expt 9 corresponds to an impact
speed of 26:8 m=s and the ;eld of view of 50 mm was centered at 29:1 mm ahead of the notch tip. Crack
speed data was obtained from crack length history. Expt 15 corresponds to an impact speed of 27:7 m=s and
the ;eld of view of 50 mm was centered at 63:1 mm ahead of the notch tip. Crack speed data was obtained
from Mach angle measurements.
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of view of 50 mm was centered on the weak plane, 29:1 mm ahead of the notch tip.
Crack speed data shown for this experiment was obtained from crack length history.
A second-order interpolating polynomial is obtained for every three successive points
in the crack length history, which is then diKerentiated to give the crack speed for the
mid-point. Experiment 15 corresponds to an impact speed of 27:7 m=s and the ;eld of
view of 50 mm was centered on the weak plane, 63:1 mm ahead of the notch tip. The
crack speed data shown for this experiment was obtained by measuring the Mach angle
and using the relation (1). Crack speed estimates from Mach angle measurements are
more accurate compared to those obtained from the crack length history due to the
inherent propagation of errors in the diKerentiation process. In the case of Experiment
9, the crack had just initiated and the Mach waves had not been radiated over a
suOcient distance to be clearly distinguished. Hence we had to resort to measuring the
crack speed from crack length history.
From Fig. 3(b) we see that the initially recorded crack tip speed is close to the

shear wave speed of Homalite (within experimental error of ±100 m=s) beyond which it
accelerates (at the order of 108 m=s2), thus becoming intersonic. Thereafter, it continues
to accelerate up to the plane stress longitudinal wave speed of Homalite, following
which it decelerates and ultimately reaches a steady-state value close to

√
2cs. It should

be recalled here that the speed regime between cR and cs is forbidden by theory,
based on energy considerations. For this speed regime, the asymptotic singular solution
predicts radiation of energy away from the crack tip (negative energy release rate),
which is not possible on physical grounds. The non-singular solution predicts zero
energy 8ux to the tip, which is also inadmissible since crack propagation requires
;nite energy dissipation in the tip region. Hence a crack with a smoothly varying
crack speed cannot pass through this forbidden regime. According to this rationale, a
crack will have to jump discontinuously from the subRayleigh regime to the intersonic
regime. However, another possibility for generating such intersonic speeds is to bypass
this forbidden regime by nucleating a crack from the initial notch that instantaneously
starts to propagate at a speed above cs. Within our experimental time resolution the
second scenario seems to be the most probable.
The singular near-tip ;elds for an intersonic mode II crack were obtained by Freund

(1979). A comparison of our experimentally recorded isochromatic fringe patterns with
those predicted by the Freund’s singular solution was reported in Rosakis et al. (1999,
2000). This comparison, although very favorable on many grounds, eventually serves to
motivate the use of cohesive zone models in the analysis of intersonic fracture. Freund’s
singular solution predicts that the crack tip stress singularity q for an intersonic mode
II crack is a function of crack speed. It is found that q increases monotonically from
0 at cs to 1

2 at
√
2cs and thereafter decreases monotonically to 0 at cl. An implication

of this behavior of q is that the dynamic energy release rate G, de;ned as the energy
8ux into the crack tip per unit crack advance per unit length along the crack front, is
zero every where in the intersonic regime except at

√
2cs where it has a ;nite value.

For intersonic mode II cracks, the idealization of the crack tip process zone to a
point-size dissipative region results in a physically unrealistic situation, wherein the
requirement of a positive energy 8ux to the crack tip region is met only at

√
2cs. On

the contrary, the experimental observations show crack growth at all intersonic speeds
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(see Fig. 3(b)). Andrews (1976) pointed out that for intersonic cracks, where the crack
tip stress singularity is less than 1=2, a non-zero fracture energy is supported only
for the case where the stress drop is not abrupt, i.e., the crack tip region must have a
;nite extent. A comparatively simple way to eliminate this diOculty would be to
incorporate a dissipative zone of ;nite size in front of the tip (Andrews, 1976;
Broberg, 1989). In such a case, they showed that positive energy 8ux to the dissi-
pative zone results at all intersonic speeds except at cs and cl. A dissipative zone of
;nite extent can be incorporated readily by considering a line cohesive zone of ;nite
extent in front of the tip.
Compared to the experimental results reported in Rosakis et al. (1999), we ;nd that

when the impact speed is lower and the ;eld of view is much closer to the initiation
site (see Fig. 3(a)), then the Mach waves radiating from the tip are no longer very
sharp and have structure with a ;nite width. The ;nite width of the Mach waves is
not modeled by the singular solution, which predicts line Mach waves, along which
the stress components are singular with the same order of singularity as at the crack
tip. An intersonic mode II crack model incorporating a cohesive zone of ;nite extent
is required to model the structure of the Mach waves as well as the crack tip process
zone.
In the current paper, steady-state subsonic and intersonic mode II crack propagation

with a rate-dependent cohesive zone is analyzed. A line cohesive zone is introduced
in front of the crack tip, with the tractions on the cohesive surfaces depending lin-
early on the local sliding rate. Such a line cohesive zone has a natural motivation
from the experiments described above, where the fracture process zone was mostly
con;ned to a thin weak layer (the bond line) in front of the crack tip. The experi-
ments were also conducted with a strongly rate-dependent constituents and bonds and
hence a fast increase in shear stress within the fracture process zone may result in a
substantial increase (or, perhaps in some cases decrease) in the cohesive shear strength
of the material, motivating a cohesive law that takes rate eKects into account. Data on
the dependence of cohesive traction on sliding rate at the rates experienced during the
experiments is rather obscure. However, in this paper we limit ourselves to those cases
where the shear strength increases with sliding rate.

3. Propagating mode II crack with a line cohesive zone

Consider a semi-in;nite mode II crack with a line cohesive zone of length L in
front of the tip, propagating at a constant speed v through a homogeneous, isotropic,
linear elastic medium under 2D plane strain or plane stress conditions (see Fig. 4(a)).
The crack is constrained to propagate in its own plane (a situation that simulates the
existence of a zone of lower toughness or a preferable crack path) and the crack
speed can be either subsonic or intersonic (0¡v¡cl). For planar deformation, the
displacement ;eld u� with respect to a ;xed coordinate system (x1; x2) can be expressed
in terms of two displacement potentials �(x1; x2; t) and  (x1; x2; t) as

u�(x1; x2; t) = �;�(x1; x2; t) + ��� ;�(x1; x2; t); (2)
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Fig. 4. Dynamic mode II crack in a homogeneous, isotropic, linear elastic solid with a rate-dependent
line cohesive zone: (a) illustration showing the cohesive zone and the crack tip coordinate system; (b)
rate-dependent cohesive law relating the shear traction to the local sliding displacement and the local sliding
rate.

where ��� is the 2D alternator with �11 = �22 =0 and �12 =−�21 =1. The usual cartesian
index notation is employed, wherein repeated indices imply summation. Greek indices
take the values 1 & 2 and roman indices take the values 1, 2 & 3. Also (·); �=9(·)=9x�
and an overdot on any ;eld quantity represents derivative with respect to time.
The strain ;eld and stress ;eld components can be expressed in terms of these

displacement potentials using the strain–displacement relations and the generalized
Hooke’s law. By introducing a moving coordinate system (�1; �2)=(x1−vt; x2) centered
at the front end of the cohesive zone (see Fig. 4(a)), and assuming that crack growth
is steady state, one ;nds that the equations of motion in terms of � and  reduce to
(Freund, 1990; Broberg, 1999a)

�;11(�1; �2) +
1
�2l

�;22(�1; �2) = 0; 0¡v¡cl; (3a)

 ;11(�1; �2) +
1
�2s

 ;22(�1; �2) = 0; 0¡v¡cs; (3b)

 ;11(�1; �2)− 1

�̂2s
 ;22(�1; �2) = 0; cs ¡v¡cl; (3c)
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where

�l =

√[
1− v2

c21

]
; �s =

√[
1− v2

c2s

]
and �̂s =

√[
v2

c2−1
s

− 1
]
: (4)

Thus the motion is governed by two elliptic equations in the subsonic case, whereas for
the intersonic case it is governed by an elliptic and a hyperbolic equation. Henceforth,
the formulations for subsonic and intersonic cases are treated separately.

3.1. Subsonic case, 06 v¡cs

The most general solutions for the displacement potentials are given by (Freund,
1990)

�(�1; �2) = Re{F(zl)}; (5a)

 (�1; �2) = Im{G(zs)}; (5b)

where F(·) is a function, analytic with respect to its argument, zl=�1+i�l�2 everywhere
in the zl-plane except on the crack faces and G(·) is a function, analytic with respect
to its argument, zs = �1 + i�s�2 everywhere in the zs-plane except on the crack faces.
The stress and displacement ;elds may now be expressed in terms of the unknown
functions F and G.
For a mode II crack, the displacement component u1 is anti-symmetric with respect

to the crack plane, where as the component u2 is symmetric with respect to the crack
plane. Hence

F ′−(�1) =− RF
′−
(�1); (6a)

G′−(�1) =− RG
′−
(�1): (6b)

The superscripts “+” and “−” stand for the limits �2 → 0+ and �2 → 0−, respectively.
The traction boundary conditions on the cohesive surfaces and the crack faces are given
by

�±
22(�1) = 0; �1 ¡ 0; (7a)

�±
12(�1) =

{
�(�1=L); −L¡�1 ¡ 0;

0; �1 ¡L;
(7b)

where �(�1=L) is the unknown cohesive traction distribution on the cohesive surfaces.
Substituting for the stress ;elds in terms of F and G and incorporating the mode II
symmetries from (6), we have

(1 + �2s ){F ′′+(�1)− F ′′−(�1)}+ 2�s{G′′+(�1)− G′′−(�1)}= 0; �1 ¡ 0; (8a)

i

[
�l{F ′′+(�1) + F ′′−(�1)}+ (1 + �2s )

2
{G′′+(�1) + G′′−(�1)}

]

=

{
�(�1=L); −L¡�1 ¡ 0;

0; �1 ¡− L:
(8b)
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The ;rst of the two equations above implies that the function

P(z) = (1 + �2s )F
′′(z) + 2�sG′′(z); (9)

which is analytic everywhere in the z= �1 + i�2 plane, except possibly along the crack
line, is continuous across the crack line and it does not have any poles there. Hence
P(z) is an entire function. Furthermore, the vanishing of stress at remote points implies
that P(z) → 0 as |z| → ∞. Hence P(z) is a bounded entire function and by Liouville’s
theorem P(z) is a constant. In particular, P(z) = 0 everywhere. Hence

G′′(z) =
−(1 + �2s )

2�s
F ′′(z): (10)

The second equation in (8) becomes

iF ′′+(�1)− (−i)F ′′−(�1) =




4�s

R(v)

�(�1=L); −L¡�1 ¡ 0;

0; �1 ¡− L;
(11)

where R(v) = 4�l�s − (1 + �2s )
2 is the Rayleigh function. This is an inhomogeneous

Hilbert problem. The general solution of (11), considering only the singular terms, is
given by (Muskhelishvili, 1963; Gakhov, 1990)

F ′′(z) =
A0√
z
+

1
2 i

4�s

R(v)

1√
z

∫ 0

−L

√|�|�(�=L)
�− z

d�: (12)

Following (6) we can readily conclude that A0 is pure imaginary.
The shear stress ahead of the crack tip is given by

�12(�1 ¿ 0; �2 = 0)

=
i
R(v)
2�s

{
A0√|�1|

+
1
i 

2�s

R(v)

1√|�1|

∫ 0

−L

√|�|�(�=L)
�− |�1| d�

}
: (13)

Far ahead of the crack tip, i.e., for �1 = D�L, �2 = 0, the solution must match the
square root singular stress intensity factor ;eld for steady subsonic crack growth.

�12(�1 = D; �2 = 0) ≈ 
R(v)
2�s

iA0√
D

=
Kd
II√

2 D
:

⇒ iA0 =
1√
2 

Kd
II



2�s
R(v)

: (14)

Also, with the presence of a cohesive zone, the stresses must be bounded at its front
end and the stress intensity factor here should vanish.

lim
�1→0+

�12(�1 ¿ 0; �2 = 0)
√

2 �1 = 0

⇒ iA0 =
1

 

2�s
R(v)

∫ 0

−L

�(�=L)√|�| d� (15)
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⇒ Kd
II =

√
2
 

∫ 0

−L

�(�=L)√|�| d�: (16)

The �1-gradient of the sliding displacement u1 along the upper cohesive surface is
given by

u1;1(−L¡�1 ¡ 0; �2 → 0+) =−v2

c2s

�s
R(v)

√|�1|

 

pv
∫ 0

−L

�(�=L)√|�|(�+ |�1|)
d�: (17)

For steady crack growth (̇·)=−v(·);1. Hence the above result relates the rate of sliding
within the cohesive zone to the cohesive traction resisting the sliding.

3.2. Intersonic case, cs ¡v¡cl

Owing to the symmetry of the problem, we consider the solution to equations (3)
only in the upper half-plane (�2¿ 0). The general solutions for the displacement
potentials are (Freund, 1990)

�(�1; �2) = Re{F(zl)}; (18a)

 (�1; �2) = g(�1 + �̂s�2); (18b)

where F is the same function as in the subsonic case and g(·) is a real function of
its argument. The radiation condition is employed here, i.e., an intersonic crack is only
capable of generating backward running shear waves (Freund, 1979; Liu et al., 1995).
The displacement and stress ;elds may now be expressed in terms of the unknown
functions, F and g.
Mode II symmetries, ahead of the crack tip reduce to

F ′′+(�1) =− RF
′′−

(�1); �1 ¿ 0; (19a)

g′′+(�1) = 0; �1 ¿ 0: (19b)

Following (19) we can de;ne $(z) (by analytic continuation), a function analytic
everywhere on the complex z-plane except on the crack faces as

$(z) =

{
F ′′(z); Im{z}¿ 0;

− RF
′′
(z); Im{z}¡ 0:

(20)

The traction boundary conditions on the upper crack face and the cohesive surface
reduce to

g′′+(�1) =
−(1− �̂2s )

4�̂s
{F ′′+(�1) + RF

′′−
(�1)}; �1 ¡ 0; (21a)


[− 2�l Im{F ′′+(�1)} − (1− �̂2s )g
′′+(�1)] =

{
�(�1=L); −L¡�1 ¡ 0;

0; �1 ¡− L:
(21b)
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The second of the above equations reduces to

[(1− �̂2s )
2 + 4i�l�̂s]$ +(�1)− [(1− �̂2s )

2 − 4i�l�̂s]$ −(�1)

=




4�̂s



�(�1=L); −L¡�1 ¡ 0;

0; �1 ¡− L:
(22)

Similar to the subsonic case, the general solution for the inhomogeneous Hilbert prob-
lem in the upper half-plane (�2¿ 0), is given by

$(z) = F ′′(z) =
A0

zq
+

1
2 i

4�̂s

Rq

1
zq

∫ 0

−L

|�|q�(�=L)
�− z

d�; (23)

where

q=
1
 
tan−1

[
4�l�̂s

(1− �̂2s )2

]
; (24a)

Rq =
√
16�2l �̂

2
s + (1− �̂2s )4: (24b)

From mode II symmetries we can readily conclude that A0 is pure imaginary.
The shear stress ahead of the crack tip is given by

�12(�1 ¿ 0; �2 = 0) =
2
�liA0

|�1|q +
sin q 

 
1

|�1|q
∫ 0

−L

|�|q�(�=L)
�− |�1| d�: (25)

Far ahead of the crack tip, i.e., for �1 = D�L; �2 = 0, the solution must match the
singular solution.

�12(�1 = D; �2 = 0) ≈ 2
�liA0

Dq =
K∗d
II√

2 Dq
:

⇒ iA0 =
1√
2 

K∗d
II

2
�l
: (26)

K∗d
II is the intersonic mode II stress intensity factor. Also, with the presence of a

cohesive zone, the stresses must be bounded at the front end and the stress intensity
factor here should vanish.

lim
�1→0+

�12(�1 ¿ 0; �2 = 0)
√
2 �q

1 = 0

⇒ iA0 =
1

2
�l

sin q 
 

∫ 0

−L

�(�=L)
|�|1−q d� (27)

⇒ K∗d
II = sin q 

√
2
 

∫ 0

−L

�(�=L)
|�|1−q d�: (28)

The relation between the rate of sliding within the cohesive zone and the cohesive
shear traction resisting the sliding is given by

u1;1(−L¡�1 ¡ 0; �2 → 0+) =
(1 + �̂2s ) sin

2 q 
4 
�l

×
{

 �(�1=L)
tan q 

− |�1|1−q pv
∫ 0

−L

�(�=L)
|�|1−q(�+ |�1|) d�

}
: (29)
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4. Rate-dependent cohesive law

Rate-dependent cohesive constitutive relations, which relate the traction on a cohe-
sive surface to the local displacement rate, have been used in the past for modeling
elastic–viscoplastic material behavior (Glennie, 1971a,b; Freund and Lee, 1990). Glen-
nie (1971a) analyzed the problem of a uniformly moving semi-in;nite mode I crack
in plane strain, with a rate-dependent cohesive zone in front of it. He used a strip
yield zone, with the yield stress linearly dependent on strain rate to model thin plastic
zones ahead of running mode I cracks in sheets of mild-steel. He suggested that the
increased resistance to plastic 8ow at high crack speeds can explain the relatively low
terminal speeds observed for running mode I cracks. Freund and Lee (1990) analyzed
the same problem, and to model the failure mode transition observed in some ferritic
steels, introduced two diKerent fracture criteria, one for ductile fracture based on a
critical crack tip opening displacement and another for brittle fracture based on a crit-
ical stress in front of the tip. They investigated the dependence of the far-;eld applied
stress intensity factor, crack speed and a rate parameter on the failure mode selection.
The rate-dependent cohesive law used here is similar to the one used by Glennie

(1971a,b) and Freund and Lee (1990). The cohesive constitutive relation, that relates
the cohesive shear traction at any point within the cohesive zone to the local rate of
sliding was chosen to be of the form (see Fig. 4(b))

�(%̇) = �0

[
1 + �C

%̇(�1=L)
cs

]
; −1¡

�1
L

¡ 0; (30)

where �0 is the cohesive shear strength of the material under quasi-static sliding, � is
a dimensionless rate parameter, %̇(�1=L) = u̇ 1(�1=L; �2 → 0+) − u̇ 1(�1=L; �2 → 0−) is
the local sliding rate and C is another dimensionless parameter, chosen to be 
=(2�0),
so that at slip rates %̇ of the order 101 m=s, � has the order of unity. Thus the cohesive
shear traction at any point within the cohesive zone is given by

�
(�1

L

)
= �0

[
1 + �



2�0

%̇(�1=L)
cs

]
; −1¡

�1
L

¡ 0: (31)

Noting that %̇(�1=L) = −2vu1;1(�1=L; �2 → 0+) and substituting for u1;1 from (17)
and (29), we obtain

f(�1)−
{
�
v3

c3s

�s
R(v)

}
1
 
pv

∫ 0

−L

f(�)
(�+ |�1|) d�=

1√|�1|
; 06 v¡cs; (32a)

f̂(�1)
{
1 + �

v3

c3s

�̂s
Rq

cos q 
}
−
{
�
v3

c3s

�̂s
Rq

sin q 
}

1
 
pv

∫ 0

−L

f̂(�)
(�+ |�1|) d�

=
1

|�1|1−q ; cs ¡v¡cl; (32b)

where

f(�1) =
�(�1=L)

�0
√|�1|

; 06 v¡cs; (33)
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f̂(�1) =
�(�1=L)
�0|�1|1−q ; cs ¡v¡cl: (34)

Eq. (32) is a pair of singular integral equations of the Cauchy type, the solutions to
which subject to the boundary conditions

�
(�1

L
→ 0−

)
→ �0;

√
1 +

�1
L
�(�1=L → −1+) → 0; 06 v¡cs; (35a)

�
(�1

L
→ 0−

)
→ �0

(
1 +

�1
L

)q
�(�1=L → −1+) → 0; cs ¡v¡cl (35b)

give the unknown cohesive traction distributions, �(−1¡�1=L¡ 0) for the subsonic
and intersonic cases, respectively. The boundary conditions (35) ensure that the sin-
gularity exponent at the physical crack tip is smaller than that in the case of a no
cohesive zone. The solution procedure follows the methods given in Muskhelishvili
(1963), Gakhov (1990), and is omitted.

5. Solution

The cohesive shear traction distribution is given by
�
�0
(−1¡�1=L6 0)

=




1 +
sin ( 

 
(−�1=L)(+1=2

(1 + �1=L)(

∫ 1

0

(1− s)(√
s(1 + s�1=L)

ds; 06 v¡cR ;

1 +
sin * 

 
(−�1=L)1−q+*

(1 + �1=L)*

∫ 1

0

(1− s)*

sq(1 + s�1=L)
ds; cs ¡v¡cl;

(36)

where

(=
1
 
tan−1

{
�
v3

c3s

�s
R(v)

}
; 06 v¡cR ; (37)

*=
1
 
tan−1




�
v3

c3s

�̂s
Rq

sin q 

1 + �
v3

c3s

�̂s
Rq

cos q 


 ; cs ¡v¡cl (38)

and the integrals in (36) converge for −16 �1=L6 0. As mentioned before, the crack
speed regime cR ¡v¡cs is inadmissible for running mode II cracks from energetic
considerations and henceforth we restrict ourselves to subRayleigh (06 v¡cR) and
intersonic regimes only. Unless mentioned, all the plots in this section and the next one
are plotted for 2D plane stress and for � = 0:34 (Poisson’s ratio of Homalite). From
(36) one can see that ( and * are the singularity exponents associated with shear stress
at the physical crack tip (�1 =−L). �12 is singular at the crack tip, except in the trivial
case of � = 0 (rate-independent Dugdale-type cohesive zone for which both ( and *
are identically zero). For a sharp crack (no cohesive zone), the singularity exponent at
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subRayleigh speeds is 1
2 . With a rate-dependent cohesive zone, the singularity exponent

( is always less than 1
2 and moreover it is a function of crack speed. As v → cR, ( → 1

2 ,
i.e., as v → cR, the usual square root singular solution is recovered for any positive
value of the rate parameter �. For a sharp crack with no cohesive zone, the singularity
exponent at intersonic crack speeds is given by q, with its peak value of 1

2 attained at
v =

√
2cs. With a rate-dependent cohesive zone, the singularity exponent * is always

less than q, is a function of crack speed and its peak value is attained at a speed higher
than

√
2cs. As the in8uence of rate sensitivity becomes greater with other factors held

;xed, the strength of the crack edge singularity increases and the fraction of the yield
zone over which the singular solution dominates becomes greater.
With the known cohesive shear traction (36) one can compute F ′′, G′′ and g′′ and

thus obtain the dominant near-tip stress ;eld. The stress ;eld is given in Appendix A
for both subRayleigh and intersonic crack speeds. The shear stress component �12 on
the crack plane (�2 → 0+) is plotted in Fig. 5(a) for diKerent intersonic crack speeds
at a ;xed � = 0 (rate-independent cohesive zone). For � = 0 and �2=L → 0:

�12

�0
(�1=L¿ 0) =




2
 

(�1
L

)−1=2
[
1− 1

2

∫ 1

0

√
�

�+ �1=L
d�

]
; 06 v¡cR ;

sin q 
q 

(�1
L

)−q
[
1− q

∫ 1

0

�q

�+ �1=L
d�

]
; cs ¡v¡cl;

(39)

where �12 = �0 within the cohesive zone and it vanishes on the crack faces. As seen,
�12 is bounded everywhere on the crack plane. Its variation is independent of crack
speed in the subRayleigh regime, where as in the intersonic regime it is dependent
on crack speed. The in8uence of the rate parameter � on the crack plane distribution
of �12 is shown in Fig. 5(b). The distribution is shown for diKerent various values
of � at a ;xed intersonic speed v = 1:47cs. For an intersonic mode II crack with a
rate-dependent cohesive zone, �12 on the crack plane (�2 → 0+) is given by

�12

�0
(�1=L¿ 0) =

sin q 
 

(�1
L

)1−q
{∫ 1

0

d�
�1−q(�+ �1=L)

+
∫ 1

0

ds
sq(1 + s�1=L)

−
(

�1=L
1 + �1=L

)* ∫ 1

0

(1− s)*

sq(1 + s�1=L)
ds

}
; (40)

where �12 within the cohesive zone is given in (36) and it vanishes on the crack faces.
From Fig. 5(b) we can see that �12 is singular at the physical crack tip, the strength
of the singularity * increasing with �. As � → ∞, the distribution becomes the same
as in the case of a singular solution with no cohesive zone.
The cohesive zone length L is determined by imposing a physical requirement that

the stress intensity at the front end of the cohesive zone should vanish. Incorporating
the known traction distribution from (36) into (16) and (28) one can obtain the length
of the cohesive zone in terms of the far-;eld applied loading (�D

12), shear strength of
the crack plane (�0), crack speed (v) and the rate parameter (�). Since the de;nition
of stress intensity factor varies from subRayleigh to intersonic speeds, we choose �D

12
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Fig. 5. Intersonically propagating mode II crack with a rate-dependent cohesive zone: (a) stress component
�12 on the crack plane for � = 0:0 and for diKerent values of crack speed v; (b) stress component �12 on
the crack plane for v=cs = 1:47 and for diKerent values of rate parameter �.

as the measure of the amplitude of far-;eld applied loading. �D
12 is the “remote” shear

stress on the crack plane a distance D�L ahead of the crack tip, where the usual
singular solution for the case of a mathematically sharp crack with no cohesive zone
is expected to apply.

L
L0

=




1
 

[
+((+ 1=2)
+((+ 1)

]2
; 06 v¡cR ;

4
 2

(
q 

sin q 

)1=q (�D
12

�0

)1=q−2 [ +(*− q+ 1)
+(1− q)+(1 + *)

]1=q
; cs ¡v¡cl;

(41)
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where +(·) is the standard Euler gamma function. The normalizing parameter L0 is the
length of the cohesive zone associated with a quasi-statically growing crack with the
same far-;eld applied loading �D

12. It is given by

L0 =
 2

4

(
�D
12

�0

)2

D: (42)

In eKect, L=L0 represents the dependence of the cohesive zone length on v, � and �0
under a constant �D

12.
Fig. 6(a) shows the sliding rate %̇1(=%̇) on the crack plane for various intersonic

speeds with a rate-independent cohesive zone (�=0) and Fig. 6(b) shows the in8uence
of the rate parameter � on %̇1 at a particular value of the intersonic speed, v= 1:47cs.

%̇1
cs

(
−1¡

�1
L
6 0

)

=




2
�
�0


sin ( 

 
(−�1=L)(+1=2

(1 + �1=L)(

∫ 1

0

(1− s)(√
s(1 + s�1=L)

ds; 06 v¡cR ;

2
�
�0


sin * 

 
(−�1=L)1−q+*

(1 + �1=L)*

∫ 1

0

(1− s)*

sq(1 + s�1=L)
ds; cs ¡v¡cl;

(43)

where %̇1 is singular at the crack tip, however through most of the cohesive zone, %̇1
is about ≈ 2% of cs for subRayleigh speeds and is about ≈ 4% of cs for intersonic
speeds. 2–4% of cs corresponds to sliding rates of a few m=s, consistent with our
expectation while choosing the cohesive law. Also the rate parameter does not seem
to have much of an in8uence on the variation of %̇1 within the cohesive zone, though
the eKect is a bit more pronounced for intersonic speeds.
The dynamic energy release rate G, de;ned as the energy 8ux into the crack tip

region per unit crack advance per unit thickness may be expressed as (see Freund,
1990)

G = 2
∫ −L

0
�12(�1; �2 → 0+)u1;1(�1; �2 → 0+) d�1: (44)

With a rate-independent cohesive zone (� = 0), the dynamic energy release rate G is
given by

G
G0

=




2�s(�2l − �2s )
R(v)

; 06 v¡cR ;

4
 2

�̂s(�2l + �̂2s )
Rq

sin q 
1− q

(
q 

sin q 

)1=q (�D
12

�0

)1=q−2

; cs ¡v¡cl;

(45)

where G0 is the energy release rate associated with a quasi-statically propagating crack
with the same far-;eld applied load �D

12. G0 is given by

G0 =
 (, + 1)

4
�D2

12D



: (46)
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Fig. 6. Intersonically propagating mode II crack with a rate-dependent cohesive zone: (a) Relative sliding
rate %̇1 on the crack plane for �=0:0 and diKerent values of the intersonic crack speed v; (b) relative sliding
rate %̇1 on the crack plane for v=cs = 1:47 and diKerent values of the rate parameter �.

Fig. 7 shows the variation of the G=G0 with crack speed for diKerent values of �D
12=�0.

For steady subRayleigh crack growth G is path independent and hence the process
zone characteristics need not be taken into account as long as an annular region around
the crack tip exists, where the square root singular ;elds are dominant. However, for
intersonic speeds, G is dependent on the size and characteristics of the process zone. As
seen from Fig. 7, the dynamic energy release rate G is ;nite through out the intersonic
regime except for crack speeds close to cs and cl, where it vanishes. Hence, based on
the requirement of a positive energy 8ux, the entire intersonic regime is admissible for
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Fig. 7. Dynamically propagating mode II crack with a Dugdale-type cohesive zone—dependence of the
normalized energy release rate G=G0 on crack speed v, plotted for diKerent values of �D

12=�0.

mode II crack growth. The variation of G=G0 for intersonic speeds depends strongly
on the shear strength of the fracture plane �0. As �0 → ∞, the singular solution with
no cohesive zone is recovered and once again there exists only one intersonic speed
v=

√
2cs, at which the dynamic energy release rate is ;nite. With a lower shear strength

more of the intersonic regime becomes admissible, the energy 8ux into the crack tip
increases and also the energy 8ux attains its peak at a speed higher than

√
2cs. At

v=
√
2cs, an intersonic crack behaves “subsonic like”, i.e., the explicit dependence on

�0 disappears and G attains a constant value equal to 2=
√

(1 + ,)(3− ,)G0.
For a rate-dependent cohesive zone (�¿ 0):

G
G0

=




1
�
(�2l − �2s )

v3=c3s

[
+((+ 1=2)
+(1 + ()

]2
g((); 06 v¡cR ;

4
 
1
�
(�2l + �̂2s )

v3=c3s

(
q 

sin q 

)1=q (�D
12

�0

)1=q−2

×
[

+(*− q+ 1)
+(1− q)+(1 + *)

]1=q
g∗(*; q); cs ¡v¡cl;

(47)

where

g(() = 2(+
sin2( 
 2

∫ 1

0

�2(+1

(1− �)2(

[∫ 1

0

(1− s)(√
s(1− s�)

ds

]2

d�; 06 v¡cR ; (48a)
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g∗(*; q) =
*

1− q
+

sin2* 
 2

∫ 1

0

�2−2q+2*

(1− �)2*

[∫ 1

0

(1− s)*

sq(1− s�)
ds

]2

d�; cs ¡v¡cl:

(48b)

For subRayleigh crack speeds, G is path independent and hence there is no eKect of
�, whereas for intersonic speeds, the in8uence of � is small.

6. Critical crack tip sliding displacement criterion

Now we implement the second part of our cohesive law, i.e., we introduce a prop-
agation criterion, which states that sustained dynamic mode II crack growth at any
subRayleigh or intersonic speed, occurs under a constant crack tip sliding displacement
(see Fig. 4(b)).

%t = u1(�1 =−L; �2 → 0+)− u1(�1 =−L; �2 → 0−) = %ct ; (49)

where %ct is the critical crack tip sliding displacement, a material-speci;c parameter.
Such a propagation criterion, which is concerned only with the local state in the vicinity
of the crack tip is more convenient (as compared to a non-local criterion like the
GriOth’s criterion) for modeling the actual physical mechanism of crack growth as well
as for application to practical problems using numerical techniques. Also, unlike in the
subsonic case, for an intersonic crack, the process zone characteristics need to be known
to determine the energy 8ux to the tip region and hence the advantage of employing
a small-scale yielding type approach is lost. The crack tip sliding displacement, %t can
be obtained by integrating (43) along the cohesive surface

%t
%0t

=




2(
�
(�2l − �2s )
(v3=c3s )

[
+((+ 1=2)
+((+ 1)

]2
; 06 v¡cR ;

4*
 �(1− q)

(�2l + �̂2s )
(v3=c3s )

(
q 

sin q 

)1=q

×
(
�D
12

�0

)1=q−2 [ +(*− q+ 1)
+(1− q)+(1 + *)

]1=q
; cs ¡v¡cl;

(50)

where %0t is the crack tip sliding displacement associated with a quasi-statically growing
mode II crack under a far-;eld loading �D

12 and a shear strength �0:

%0t =
 (, + 1)

4
�0



(
�D
12

�0

)2

D: (51)

The critical crack tip sliding displacement criterion (49) states that %t = %0t = %ct . Hence
(50) gives a relationship between the critical values (required to satisfy the criterion)
of �D

12; v; � and �0.
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Fig. 8. Dynamically propagating mode II crack with a Dugdale-type cohesive zone—stability of crack growth.
Dependence of the critical far-;eld load (required to sustain dynamic crack growth) on crack tip speed v,
plotted for diKerent values of the interface strength parameter (
%ct )=(�0D).

Fig. 8 shows the variation of the critical far-;eld load (�D
12)

c
dyn (required to satisfy

the critical crack tip sliding displacement criterion (49)) with crack speed, for diKerent
values of �0 and at � = 0. The ratio (�D

12)
c
dyn=(�

D
12)

c
0 is given by (for � = 0)

(�D
12)

c
dyn

(�D
12)

c
0

=




√[
R(v)

2�s(�2l − �2s )

]
; 06 v¡cR ;

(

%ct
D�0

)q−1=2
√√√√[

 
2
(1 + �̂2s )

(�2l + �̂2s )

]

×
(
sin q 
q 

)[
2 �l(1− q)

(1 + �̂2s ) sin
2 q 

]q

; cs ¡v¡cl;

(52)

where the critical far-;eld load required for quasi-static crack propagation, (�D
12)

c
0 is

given by

(�D
12)

c
0 = �0

√
4

(, + 1) 

%ct
D�0

: (53)

As seen from Fig. 8, for a subRayleigh crack, the far-;eld load required to sustain a
small acceleration in crack speed is lower compared to its previous value. This situation
may be interpreted as an instability and it can be expected that a subsonic mode II
crack would accelerate rapidly to cR. This explains the reason for non-observation of
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any subsonic crack speeds for mode II shear cracks propagating along a weak plane
in Homalite (see Fig. 3(b)). Even if the shear crack initiating from the notch initially
propagated at subRayleigh speeds, it would immediately accelerate to cR and beyond.
By the same interpretation, for an intersonic crack, there is an initially unstable speed
regime followed by a stable speed regime. The critical far-;eld load (�D

12)
c
dyn=(�

D
12)

c
0 is

also a function of a material parameter (
%ct )=(�0D) in the intersonic regime. 
 and %ct
are material constants and D is an arbitrary distance ahead of the crack tip at which the
singular solution with no cohesive zone dominates. Hence the parameter (
%ct )=(�0D)
may be interpreted as a measure of shear strength of the fracture plane. It is seen that
the entire speed regime cs ¡v¡

√
2cs is unstable and the speed at which intersonic

crack propagation becomes stable depends on the shear strength of the fracture plane.
For �0 → 0, i.e., for the case of vanishing shear strength of the fracture plane, almost
the entire intersonic regime becomes unstable, indicating that a mode II crack on a weak
plane of vanishing strength should propagate at speeds close to cl. On the other hand,
for �0 → ∞, the singular solution with no cohesive zone is recovered and the onset of
stability occurs at v=

√
2cs. Similar observations that the speed regime

√
2cs ¡v¡cl

is stable for intersonic mode II crack growth were made by Burridge et al. (1979),
Freund (1979). For more realistic values of the parameter (
%ct )=(�0D) ≈ 10−2–10−3,
the critical load required to sustain intersonic crack propagation is a minimum between√
2cs and 1.5. This explains the observed experimental behavior of crack speed, where

the intersonic mode II crack was found to accelerate to speeds close to cl and then as
the loading pulse was cut-oK, settled down to a stable propagation speed close to

√
2cs.

Such a crack speed behavior was also observed by Needleman 1999 in his numerical
simulations of mode II crack growth along a weak plane. A portion of rupture front
during the 1999 Turkey Earthquake was also found to propagate at

√
2cs (Bouchon

et al., 2001).
Fig. 9 shows the eKect of the rate parameter � on the critical far-;eld load for

both subRayleigh and intersonic mode II crack propagation, with a chosen value of the
material parameter (
%ct )=(�0D) = 0:01.

(�D
12)

c
dyn

(�D
12)

c
0

=



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1
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+((+ 1)
+((+ 1=2)

; 06 v¡cR ;
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D�0

)q−1=2 [ �
2*

v
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(1− q)

]q
√√√√[

 
2
1 + �̂2s
�2l + �̂2s

]

×
(
sin q 
q 

)
+(1− q)+(1 + *)

+(*− q+ 1)
; cs ¡v¡cl:

(54)

Unlike for a rate-independent cohesive zone, subRayleigh mode II crack growth with
a rate-dependent cohesive zone is stable up to a threshold speed, beyond which it
would accelerate unstably to cR. As v → cR ; (�D

12)
c
dyn=(�

D
12)

c
0 attains a ;nite value equal

to
√

�cR =(2cs(1 + �)). For intersonic mode II crack growth with a rate-dependent
cohesive zone, it is seen that increasing rate sensitivity increases the level of the
critical load required as well as moves the crack speed corresponding to the onset
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Fig. 9. Dynamically propagating mode II crack with a rate-dependent cohesive zone—stability of crack
growth. Dependence of the critical far-;eld load (required to sustain dynamic crack growth) on crack tip
speed v, plotted for (
%ct )=(�0D) = 10−2 and for diKerent values of the rate parameter �.

of instability closer towards
√
2cs. Here, it must be understood that stability results

obtained for a steadily moving semi-in;nite crack may be signi;cantly diKerent from
those for cracks with more realistic geometries. Broberg (1994, 1995) showed that
for a symmetrically expanding mode II crack under uniform remote shear loading, the
entire intersonic regime is unstable and that such a crack would accelerate all the way
up to cl. Burridge et al. (1979) argued that instability is more pronounced in the case
of ;nite cracks undergoing transient crack growth. If a particular speed regime is found
to be unstable for a moving steady-state semi-in;nite crack, then the possibility that it
would also be unstable for an expanding ;nite crack is very high.
The normalized critical cohesive zone length, Lc

dyn=L
c
0 is given by

Lc
dyn

Lc
0

=




1
2 

�
(

v
cs

1− �2s
�2l − �2s

; 06 v¡cR ;

1− q
 

�
*

v
cs

1 + �̂2s
�2l + �̂2s

; cs ¡v¡cl;

(55)

where, the critical cohesive zone length for quasi-static crack propagation

Lc
0 =

 (, + 1)
16

(

%ct
�0

)
: (56)

The critical cohesive zone size for subRayleigh speeds, was found to decrease mono-
tonically up to cR. It vanishes at cR in the case of a rate-independent cohesive zone,
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Fig. 10. Dynamically propagating mode II crack with a rate-dependent cohesive zone—variation of the
critical dynamic energy release rate (fracture energy required to sustain dynamic crack growth) with crack
tip speed v, plotted for diKerent values of the rate parameter �.

whereas it attains a ;nite value equal to 2�cR=( (1 + �)cs) at cR for any +ve �. An-
drews (1976) in a numerical simulation of a symmetrically expanding mode II crack
under the action of remote uniform shear stresses found that the cohesive zone size
decreases continuously with crack speed in the subRayleigh regime attaining its mini-
mum value at cR. Such a behavior was also observed in the numerical simulations of
Geubelle and Kubair (2001). In the intersonic case, the cohesive zone size is always
;nite and positive. Such an observation was used by Yu and Suo (2000) to justify the
admissibility of mode II intersonic crack growth. The critical cohesive zone length is
found to be rather insensitive to the rate parameter �.
Fig. 10 shows the variation of critical dynamic energy release rate (rate-dependent

fracture energy) with crack speed for diKerent values of the rate parameter �.

Gc
dyn

Gc
0

=




1
2(

g(() =
�
(
v3

c3s

�s
R(v)

[
+((+ 1)
+((+ 1=2)

]2
; 06 v¡cR ;

1− q
*

g∗(*; q); cs ¡v¡cl;

(57)

where the critical energy release rate for quasi-static crack propagation

Gc
0 = �0%ct : (58)

The material=specimen dependent “fracture energy vs crack speed” curve is strongly
in8uenced by the rate parameter �. It is found that for a rate-dependent cohesive zone
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Fig. 11. Isochromatic fringe pattern around a propagating intersonic mode II crack with a rate-dependent co-
hesive zone. The propagating crack obeys a critical crack tip sliding displacement criterion with %ct ≈ 21 �m
and 
=�0 = 136. Also v=cs = 1:47, � = 0:4 and Lcdyn = 2:5 mm. A magni;ed view of the region around the
crack tip (enclosed in the black rectangle) is shown on the right.

(�¿ 0), the dissipated fracture energy (required to sustain mode II crack growth) into
the tip region blows up as v → cR, suggesting that a subsonic mode II crack would
encounter ever increasing resistance as it approaches cR. In the intersonic regime,
Gc

dyn=G
c
0 is ;nite and positive throughout, with a peak in dissipated fracture energy

at a speed higher than
√
2cs. The fracture energy is found to depend strongly on the

rate parameter �, with higher energy dissipated with increasing rate sensitivity. Thus
the importance of the curious speed of

√
2cs (vis-a-vis energy 8ux into the tip) is

diminished.
Fig. 11 shows the theoretically predicted isochromatic fringe pattern around an inter-

sonically propagating mode II crack. The crack propagates with a line cohesive zone
in front of the tip and also obeys the critical crack tip sliding displacement criterion.
The intersonic crack was assumed to be propagating at 1:47cs and the cohesive law
was assumed to be rate dependent (�=0:4). In both cases, the ratio of shear modulus
to the shear strength of the weak plane (
=�0) was chosen to be 136, approximating
the case of Homalite=Homalite bonded specimen used in the experiments. The critical
crack tip sliding displacement was chosen to be 21 �m. This ensures that the critical
cohesive zone length determined from (55) and (56) would lie between 2 and 3 mm
(for intersonic speeds close to

√
2cs), which is approximately the width of the Mach

wave seen in Fig. 3(a).
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The ;eld of view shown in Fig. 11 has a 50 mm diameter and the front end of the
cohesive zone is located on the horizontal diameter about 35 mm from the left edge
of the ;eld of view. The cohesive zone length (v = 1:47cs) was found to be 2:5 mm
for � = 0:4. We see that the presence of a cohesive zone gives a ;nite width to the
Mach waves emanating from the tip region. Comparing it with the experimental fringe
pattern shown in Fig. 3(a), we see that the patterns are similar in a small region close
to the crack tip. Also, the fringe pattern within the ;nite width of the Mach waves,
seems to be qualitatively similar. The range of dominance of the current solution seems
to be of the order of about 20 mm.

7. Summary

1. Experimental evidence is provided of intersonic mode II cracks along a weak plane
joining two identical Homalite-100 plates.

2. The observed mode II crack speeds span the entire intersonic regime. Also the Mach
waves radiating from the intersonic crack tip have a ;nite width. Such features could
not be explained based on the Freund’s singular solution for an intersonic mode II
crack, thus motivating our study based on a cohesive zone model.

3. Subsonic and Intersonic mode II crack propagation with a rate-dependent cohe-
sive zone is analyzed. A cohesive law is chosen, wherein the cohesive shear trac-
tion depends linearly on the local sliding rate. Complete decohesion is assumed to
occur when the crack tip sliding displacement reaches a material-speci;c critical
value. Explicit expressions are obtained for the near-tip stress and particle velocity
;elds.

4. With the rate-dependent cohesive zone model, it is found that the fracture energy is
;nite through out the intersonic regime. The importance of the curious speed

√
2cs

is diminished, and the energy dissipated is found to be higher at intersonic speeds
closer to cl. Fracture energy was found to be a strong function of rate sensitivity,
increasing with increasing value of the rate parameter.

5. Investigation of the behavior of required far-;eld loads, indicated that the subsonic
regime is inherently unstable for mode II cracks. However, with increasing rate
sensitivity, stable mode II crack growth was found to be possible at low subsonic
speeds. Mode II crack growth at intersonic speeds was found to be unstable up to
a critical speed higher than

√
2cs, beyond which it was found to be stable, thus

explaining the observed crack speed behavior in the experiments. With decreasing
strength of the crack plane, it was found that an intersonic mode II crack would
accelerate all the way up to cl, whereas increasing strength of the crack plane seems
to favor stable crack growth at speeds close to

√
2cs.

6. Isochromatic fringe patterns were generated using the crack tip ;elds around an
intersonic mode II crack with a rate-dependent cohesive zone. They agree reasonably
well with the experimentally recorded patterns, especially close to the crack tip.
The Mach waves were found to be of ;nite width, the isochromatic fringe pattern
within which was also qualitatively similar to that observed in the experimental
patterns.
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Appendix A. Near-tip stress *elds

For a subsonic mode II crack with a rate-independent cohesive zone (� = 0):

�11

�0
=

4�s
 R(v)

[
(1 + 2�2l − �2s )√

rl=L

{
−sin

(
$l
2

)

+
1
2

∫ 1

0

√
.[. sin($l=2) + (rl=L) sin(3$l=2)]
.2 + (rl=L)2 + 2.(rl=L) cos $l

d.
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2

)
+

1
2

∫ 1

0

√
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d.

}]
; (A.1a)
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�0
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−1√
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{
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(
$l
2

)

+
1
2

∫ 1

0

√
.[. sin($l=2) + (rl=L) sin(3$l=2)]
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d.
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×
{
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(
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2

)
+

1
2

∫ 1

0

√
.[. sin($s=2) + (rs=L) sin(3$s=2)]
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d.

}]
; (A.1b)

�12
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 R(v)
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−4�l�s√
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{
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(
$l
2

)

+
1
2

∫ 1

0

√
.[. cos($l=2) + (rl=L) cos(3$l=2)]
.2 + (rl=L)2 + 2.(rl=L) cos $l

d.

}

− (1 + �2s )
2√
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{
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(
$s
2

)

+
1
2

∫ 1

0

√
.[. cos($s=2) + (rs=L) cos(3$s=2)]
.2 + (rs=L)2 + 2.(rs=L) cos $s

d.

}]
; (A.1c)
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where

rs =
√

�21 + �2s�
2
2; $s = tan−1

[
�s�2
�1

]
; (A.2a)

rl =
√

�21 + �2l �
2
2; $l = tan−1

[
�l�2
�1

]
: (A.2b)

For a subsonic mode II crack with a rate-dependent cohesive zone (�¿ 0):

�11

�0
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2�s
 R(v)

[
(1 + 2�2l − �2s )

√
rl
L
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(
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2
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sin ( 

 

∫ 1

0

(
.

1− .

)(
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; (A.3a)
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0

(
.

1− .
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√
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(
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+
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For an intersonic mode II crack with a rate independent cohesive zone (� = 0):
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+
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For an intersonic mode II crack with a rate-dependent cohesive zone (�¿ 0):
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+(1− �̂2s ) sin q �1−q
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where

Q(�; *) =
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cos *
(

�
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